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Introduction

About OPAL-RT Technologies

Founded in 1997 in Montreal, QC, Canada

350+ employees, growing sustainably

1000+ customers in all industries around the world

20% of annual revenue re-invested in R&D

40% academic, 60% industries

90% revenue from electrical and power electronics sectors

Markets
HIL, RCP, real-time laboratories
...and fast off-line and on-line close-to-real-time (cloud) simulation

for education, R&D and all industries: energy, power electronic, automobile,
off-highway vehicle, aerospace, ships, trains ...

HSBC 4<X»

International
BUSINESS AWARDS

Strong International Footprint

International subsidiaries, offices and Excellence Centers:

* USA (Michigan, Colorado), Germany, France (Paris and Lyon), India, China,
Brazil, Australia

Distributors:

* China, Australia, Japan, Korea, Singapore, Israel, Ukraine, Kazakhstan, Oman,
Pakistan, Qatar, Turkey, United Arab Emirates , Kingdom of Saudi Arabia
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ardware-In-the-Loop Testing for Power Electronics

Solid-state Hybrid
Wl transformers AC/DC erids Resonant
2 converters %E
Onboard
microgrid

Tici Interlinking
1% converters
g
converters
Next generation
power grid
i

Multi-terminal
DC grids
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Traction
inverters =]

Bidirectional _3 j_’
converters -

How do we validate control systems for next
generation grid and devices?

» Hardware-in-the-Loop Testing
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« DuT - controller for a power electronic conv

IL Testing of Controllers for Power Electronic Converters

erter with modulator for generation of switching signals

 Real-Time Simulator - digital simulation of the power electronic converter with switching elements and

system surrounding the converter

+ Information exchange - analog signals for measurements and digital signals for switching signals

Hardware-in-the-Loop setup

Real-Time Simulator

Switching signals
JLL

Measurements

@

Controller

Demo Setup
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Switching signals
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Power Electronics Simulation

T
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Measurements

Controller
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Power Electronics Modeling for EMT Studies

Detailed Semiconductor

“Ideal” Switching

Switching Functions

Average Models

Ideal Switch

Constant Conductance
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Modeling Approach

Voltage Source

Current Source
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Detailed Semiconductor

MOSFET SPICE model !

CGSO -T VG CGSO
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» Modeled Features Vet P VS\====m==L,VD Ro v,
- MM i c \_/C i
e Instantaneous turn on/off time Bs LeD I
representation R, R
* Conduction and switching losses
(Requires good tuning of parameters) Vs
) ) ) ] Turn on 2 Turn off 2
*  Thermal model simulation with high .
accuracy " fs =
/ D 50 400 f"‘l i 00
* Ripple representation with high accuracy = _ /,/ lovershoot € % 0 T’a\\\ﬁk Ly .
g : ] IR 2
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e Device transient characteristics (e.g. B ™ — I Voo :
MOSFET, IGBT, etc.) can be modeled. - peak R
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1Source: https://ecee.colorado.edu/~bart/book/book/chapter7/ch7_5.htm#fig7 e )

. 05 06 o
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2Source: A. Sokolov, “Variable-Speed Power Switch Gate Driver for Switching Loss G R I D /( IEEE
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Reduction in Automotive Inverters.” IEEE POWER
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etailed Semiconductor

Pros MOSFET SPICE model 1
, : C Vg C
 Have the highest accuracy in e N/
representation of the power Vgt o \/S\====m==l/vD Rp vy -
electronic converters TNWTT O T
Cez  Cap I,
Cons
RB RB
« Computationally intensive, since the
switches are modeled with their , \% ,
details Turn on B Turn off
* Requires a very low timestep (~10s H“'\MM | ; .
of ns) for accurate solution of the /“ o I Vovershoot |1
discretized non-linear switch j ] lovershoot |5 5 =0 it
models e | oy g @t
) 12 - lpeak 5 o 100 I’f \ Vpeak :
»  Not suitable for real-time Uy I
simulations = '

time (i) time (us)
1Source: https://ecee.colorado.edu/~bart/book/book/chapter7/ch7 5.htm#fig7 5 1

=74 G R I D&g %S Km
2Source: A. Sokolov, “Variable-Speed Power Switch Gate Driver for Switching Loss e 2024 ; @PES I E E E
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emlswich T N

deal Switch

==|out_B_Detailed==lout_B_Avg

2000
> Modeled Features 1500
e Instantaneous turn on/off time 1000t Ave
representation so0ld
* Conduction and switching losses of
(Requires tuning of parameters) 500
* Ripple representation with high 1000
accuracy 4500
Von -2000 : ' : ' : :
SW Ron 13.19 132 13.21 1322 1323 13.24 13.25 13.26
/
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deal Switch

> Pros
* The classic EMT-type software model
e Straightforward model which does not require handling particular cases

* Good accuracy for most power electronics CHIL tests with small enough time-step

* A 10times smaller timestep than the switchingtime period T

= toget a 10% resolution accuracy
max 10Xf:S'W

on the PWM (may result in numerical oscillations)

» Cons

* Computationally intensive and requires matrix pre-calculation or system decoupling for real-
time simulation or larger systems

* However, requires increasing memory if pre-calculation if matrices is used
* Requires tuning snubbers with respect to time-step and surrounding model eigenvalues

pels
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onstant Conductance

Aliases: Pejovic Method | Associate Discrete Circuit

» Modeled Features L é G\E L c % @l)_‘g e

1_'_7

* Ripple representation with higher accuracy Switch closed Switch opened

* Instantaneous turn on/off time representation |

Gs=N/ = C/ wherehisthe
time step used in the circuit

Pejovic, P.; Maksimovic, D.; , "A new algorithm for simulation of power electronic systems using piecewise-linear device models," Power Electronics, IEEE Transactions on , vol.10, no.3, pp.340-348,

May 1995. pds
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onstant Conductance

Aliases: Pejovic Method | Associate Discrete Circuit

e 8

«  Good accuracy and allows fast simulation for CHIL testing  * @ é hiL c T @ é c/h

of faster power electronics controls ! 1 | 11

*  Low computational burden allowing very low time-steps

when implemented on FPGA Switch closed Switch opened
Cons Gs=N/ = C/ wherehisthe
«  Creates virtual power loss (compensated for in the time step used in the circuit

eFPGASIM implementation for standard converter

topologies)

. Requirels tluning of tlhe (rﬁ]s arametﬁrs (eFPGASIM provides
a Gs calculation tool to help tune the Gs parameter) m e FPGAS I M
Pejovic, P.; Maksimovic, D.; , "A new algorithm for simulation of power electronic systems using piecewise-linear device models," Power Electronics, IEEE Transactions on , vol.10, no.3, pp.340-348,

May 1995. pdS
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witching Function

Aliases: Time Stamped Bridge (TSB) | Virtual FPGA Switching

Vout_Det
» Model Features Vout_ideal
. \ Vout_SF
Suitable for voltage-source converters .
modeling S \
Ton
Compensates for the adverse effects of «—>
pulsing from controllers (CHIL) occurring
in between discrete-time steps n-1 A n+l
| | |
Accurately represents the voltage < >
harmonic spectrum near the Ts
fund If f operat fon@ = 1)
undamental frequency of operation Vour(n) = — 5 X Vpc(n—1)
S
Allows effective modeling of switch Ton(n)
dead-times Vour(m+1) = 2 X Vpe(n) = Vpe

15
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witching Function

Aliases: Time Stamped Bridge (TSB) | Virtual FPGA Switching

60

» Pros

no deadlime
5 us deadtime
10 us deadtime | |

50

*  Good accuracy for system level and converter level studies

15 us deadtime
20 us deadtime

. Fast execution time

B
(=]
T

* RequiresTy = ~4if for an accuracy of ¥2% on the
duty cycle W

no time-stamps

Load current (A)
o
o

20

*  Allows study of converters in larger systems without —— \ |- ,
. . A . . \ M
requiring as much decoupling as ideal switch to achieve o Roas=ioms oas=tom | e Wiy
real'tlme Dul: after 100ms: 50% -100%sec N A
*  With computation technology (ex. FPGA) which is very b 008 01 o1 0z 025 03
fast, but not enough to simulate very fast power Time (5)

electronics (ex. f,,,=100 kHz), switching function remain a

very good solution for real-time simulation m eMEGASIM
" cone 3] HYPERSIM

. fCerl‘cai)n cases may not be possible to simulate (ex. internal
aults
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erage Models

» Model Features

17

Models the average signal produced by
the converters

Models the near fundamental
dynamics of the system

VDC

Effects of switching are neglected

Ton

1
Vout = T j S(t) dt X Vg
sw

duty cycle

S is the switch stat, T, is the switching

period, V. is the DC link voltage and V,,,;

is the output voltage across the switch.
Vout

\
\
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Average Models

Ton

1
Vout = T__[ S(t) dt X Vg
sw 2

» Pros

duty cycle

*  Very fast execution S is the switch stat, T, is the switching

«  Good for large system studies and period, V. isthe DClink voltage and V,,,;
controller interactions is the output voltage across the switch.
Vout
» Cons
. \ o
e Switching frequency and its related Y
phenomena are neglected o | | | |
>
* Does not include low frequency | <T°N‘ |
phenomenon due to switching such as — = = —
non-linearity due to dead-time I I I I I
4T—>

pals
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Types Of Average Models

» Voltage Source

(D)

(D)

Filter
Network

> Implemented with the output filter

» Can include DC side dynamics

» Models the filter related dynamics of the

system

19

» Current Source

(o)A
_/
(o) B
_/
(o)
\_/

» Usually does not include DC side dynamics
» Filter dynamics are also neglected

» System level control dynamics can be
modeled
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Switching Models for Power Electronics — Summary l

Computational Ease

=
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g Detailed ' . o c . - . n

(V) SrmieealEEr Ideal Switch Constant Conductance | Switching Functions Voltage Source Current Source O

g E

= +

o =L

(v

O o
o=

Model Exactitude
(Frequencies of interest
Switching Harmonics l Assets Controllerinteractions
[ System Power Quality ]
1 MHz 100 kHz 10 kHz 1 kHz 100 Hz 10 Hz
N | | | [N | | [l | | [ | | N | | [ [
nnos”l | 1T T TTTTe [ T T TTTTh [ T T TTTTH I T T TTTTN I T TTTTy selconds
<= lus 10 us y 100 ps 1ms 10 ms 100 ms >
(Time step) m Islanding Protection Cascaded Events
IH eFreasiv EMEQASI . - >
(Time frame of Stability
3] HYPERSIM teret)
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ulti-Port Autonomous Reconfigurable Solar power plant (MARS)

» A CHIL simulation platform for Multi-port MARS architecture
Autonomous Reconfigurable Solar Power Plant
(MARS)

- Study the integrated power electronics to
interface utility-scale solar power, energy
storage, dc, and ac systems with advanced grid
services

- Customized FPGA models of front-end
converters (sub-pus)
* OPAL-RT’s legacy Time-Stamped Bridges

* Upto 2400 submodules in the system with independent
gating signals

* Add-on two types of DC/DC converters with PV and ESS

* Low level control for DC/DC converters with independent
gating signals

- ACgrid model (13 buses) runningin CPU (60
Ms)

IEEE
*Z.Dong, S. Debnath, W. Li, Q. Xia, P.R. V. Marthi and S. Chakraborty, "Real-time Simulation Framework for Hardware-in-the- 25 e G R I D 2&024 % @PES IE E E
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ulti-Port Autonomous Reconfigurable Solar power plant (MARS)

MARS FPGA model MARS CHIL system setup

f L1 Control Platform on OP4510 OP5707 Real Time Simulator
rom L- F
ront-end ; PV&ESS 4 =0 @, )
Controller . Voltage X6 s -1l controller e AC grid
——( L-Z Contl’ollel‘ Half-bl‘ldges Converters e MARS interface
6 Model RAM X12 PV X6 ESS I T I
. Current X6 TEA 16 16 FPGA
Gating Gating Duty o L-2 controller R et MARSSMs
Signal | vél Sional \ Ratio o L-3 controller
& KA 3% SEP ports _/ Fiber optics (SFP) o 3% SEP ports L/

~Rib) (Ri ) Rant TRang RAML) AN

to L-1 Optic

Lontrollen SFP Protocol Fibers ~ SFP Protocol L-3 Controller

0P4510 FPGA OPS707 FPGA W — T

*Z.Dong, S. Debnath, W. Li, Q. Xia, P. R. V. Marthi and S. Chakraborty, "Real-time Simulation Framework for Hardware-in-the-Loop Testing of Multi-port Autonomous Reconfigurable Solar Power Plant (MARS)," 2021 |EEE Energy Conversion

Congress and Exposition (ECCE), Vancouver, BC, Canada, 2021, pp. 3160-3167, doi: 10.1109/ECCE47101.2021.9595731.
IEEE POWER
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Modular, Multifunction, Multiport and Medium Voltage Utility Scale SiC PV Inverter l

> Project objective: Development and
demonstration of a Modular, Multi-function, _
Multiport and Medium Voltage utility scale SiC
solar inverter with integrated storage function BTN i I,

> Real-time model of M4 inverter for CHIL : L ottt

1 1 | C W—vgzd
Va||dat|0n (eHS, RT‘XSG) Ls6 L:ss 4K ¥s10 4|<]}s1z
Cs |

Input-parallel and output-series converter with 9 modules = ___ 7 —"

- 72 DAB switches switching at max sw. freq. of 50 kHz, 2 ESS
i }J}sul_ o B
1 grid  Rgria
) 3 - Ioria Voria TSB model \
A 10 -4(]}512

switches at sw. freq. 25 kHz and 36 DC/AC switches switching at
60 Hz

3 single-phase breakers between AC grid and M4 inverter

DABs with HF transformers are modeled by Time-Stamped
Bridge (TSB) and other components are modeled in eHS

eHSx128 solver

- The whole system runs in OP5707 in a single, Xilinx V7 FPGA at OP5707 Xilin Virtex7 FPGA
470 ns time step in TSB, 1 us time step in eHS |
:F IEEE
5BGRID2024 ‘&ﬁ @P ‘IEEE
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Modular, Multifunction, Multiport and Medium Voltage Utility Scale SiC PV Inverter

Tt | Controller M4 Inverter Simulator
. Trans L Lss |_:s7 42’} s9 4}4}511 Lot R CPU CPU
" j | L+ e Closed-loop M4 Inverter
- tn3| s Controller Interface
Lsa i Ls6 L:ss -1%}510 +K'}s1z

=== 3 il Simulated Outputs ~ Parameters
Order
_______ . FPGA
i FPGA

Kk so 4)J}s11 Y PWM
’ e OP4510

4| S10 4 S12
' %3 ﬁ} Y Gating Data Com-

eHSx128 solver e Signals munication
0P5707 Xilinx Virtex7 FPGA

. . ) Oscilloscope €—————
» CHIL simulation platform of M4 inverter > TSBModel <—

- OP5707: M4 inverter, OP4510: M4 inverter output current
controller

OP5707

- Data communication: digital and analog channels

pals
“eGRIDE: 4 (@R $IEEE
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Summary

Hardware-in-the-Loop (HIL) testing and experimentation is essential for validating the behavior
of Power Electronics converters accurately.
Accurate models need to be chosen for modeling power electronics-based converters
depending on the use cases considered.
While detailing switching models are ideal for accurate HIL testing, in specific cases, the
appropriate use of switching function-based models and constant conductance-based models
are adequate for HIL testing and scalable real-time simulations.

pds :
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