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• Founded in 1997 in Montreal, QC, Canada

• 350+ employees, growing sustainably

• 1000+  customers in all industries around the world

• 20% of annual revenue re-invested in R&D

• 40% academic, 60% industries

• 90% revenue from electrical and power electronics sectors

• Markets
• HIL, RCP, real-time laboratories 
• …and fast off-line and on-line close-to-real-time (cloud) simulation
• for education, R&D and all industries: energy, power electronic, automobile, 

off-highway vehicle, aerospace, ships, trains ...
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Introduction
About OPAL-RT Technologies Strong International Footprint

International subsidiaries, offices and Excellence Centers:

• USA (Michigan, Colorado), Germany, France (Paris and Lyon), India, China, 
Brazil, Australia

Distributors:

• China, Australia, Japan, Korea, Singapore, Israel, Ukraine, Kazakhstan, Oman, 
Pakistan, Qatar, Turkey, United Arab Emirates ​, Kingdom of Saudi Arabia
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Hardware-In-the-Loop Testing for Power Electronics
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• DuT – controller for a power electronic converter with modulator for generation of switching signals

• Real-Time Simulator – digital simulation of the power electronic converter with switching elements and 
system surrounding the converter 

• Information exchange – analog signals for measurements and digital signals for switching signals
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HIL Testing of Controllers for Power Electronic Converters 
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Power Electronics Modeling for EMT Studies
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▸Modeled Features
• Instantaneous turn on/off time 

representation
• Conduction and switching losses 

(Requires good tuning of parameters)
• Thermal model simulation with high 

accuracy 
• Ripple representation with high accuracy
• Device transient characteristics (e.g. 

MOSFET, IGBT, etc.) can be modeled. 
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Detailed Semiconductor

1 Source: https://ecee.colorado.edu/~bart/book/book/chapter7/ch7_5.htm#fig7_5_1

MOSFET SPICE model 1

Turn on 2 Turn off 2

2 Source: A. Sokolov, “Variable-Speed Power Switch Gate Driver for Switching Loss 
Reduction in Automotive Inverters.”
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Detailed Semiconductor
Pros

• Have the highest accuracy in 
representation of the power 
electronic converters

Cons

• Computationally intensive, since the 
switches are modeled with their 
details

• Requires a very low timestep (~10s 
of ns) for accurate solution of the 
discretized non-linear switch 
models

• Not suitable for real-time 
simulations

1 Source: https://ecee.colorado.edu/~bart/book/book/chapter7/ch7_5.htm#fig7_5_1 

MOSFET SPICE model 1

Turn on 2 Turn off 2

2 Source: A. Sokolov, “Variable-Speed Power Switch Gate Driver for Switching Loss 
Reduction in Automotive Inverters.”

https://ecee.colorado.edu/%7Ebart/book/book/chapter7/ch7_5.htm#fig7_5_1


The professional home for the engineering and technology community worldwide

▸Modeled Features
• Instantaneous turn on/off time 

representation
• Conduction and switching losses 

(Requires tuning of parameters)
• Ripple representation with high 

accuracy
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Ideal Switch
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▸Pros
• The classic EMT-type software model
• Straightforward model which does not require handling particular cases
• Good accuracy for most power electronics CHIL tests with small enough time-step

• A 10 times smaller timestep than the switching time period 𝑇𝑇𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 = 1
10×𝑓𝑓𝑠𝑠𝑠𝑠

 to get a 10% resolution accuracy 
on the PWM (may result in numerical oscillations)

▸Cons
• Computationally intensive and requires matrix pre-calculation or system decoupling for real-

time simulation or larger systems
• However, requires increasing memory if pre-calculation if matrices is used 
• Requires tuning snubbers with respect to time-step and surrounding model eigenvalues
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Ideal Switch



The professional home for the engineering and technology community worldwide

▸Modeled Features
• Instantaneous turn on/off time representation
• Ripple representation with higher accuracy
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Constant Conductance

Switch closed Switch opened

Gs = �h
L  = �C

h  where h is the 
time step used in the circuit

Pejovic, P.; Maksimovic, D.; , "A new algorithm for simulation of power electronic systems using piecewise-linear device models," Power Electronics, IEEE Transactions on , vol.10, no.3, pp.340-348, 
May 1995.

Aliases: Pejovic Method | Associate Discrete Circuit
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Pros

• Good accuracy and allows fast simulation for CHIL testing 
of faster power electronics controls

• Low computational burden allowing very low time-steps 
when implemented on FPGA

Cons

• Creates virtual power loss (compensated for in the 
eFPGASIM implementation for standard converter 
topologies)

• Requires tuning of the Gs parameters (eFPGASIM provides 
a Gs calculation tool to help tune the Gs parameter)
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Constant Conductance

Switch closed Switch opened

Gs = �h
L  = �C

h  where h is the 
time step used in the circuit

Pejovic, P.; Maksimovic, D.; , "A new algorithm for simulation of power electronic systems using piecewise-linear device models," Power Electronics, IEEE Transactions on , vol.10, no.3, pp.340-348, 
May 1995.

Aliases: Pejovic Method | Associate Discrete Circuit
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▸Model Features
• Suitable for voltage-source converters 

modeling
• Compensates for the adverse effects of 

pulsing from controllers (CHIL) occurring 
in between discrete-time steps

• Accurately represents the voltage 
harmonic spectrum near the 
fundamental frequency of operation

• Allows effective modeling of switch 
dead-times

15

Switching Function

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛 =
𝑇𝑇𝑂𝑂𝑂𝑂(𝑛𝑛 − 1)

𝑇𝑇𝑠𝑠
× 𝑉𝑉𝐷𝐷𝐷𝐷(𝑛𝑛 − 1)

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛 + 1 =
𝑇𝑇𝑂𝑂𝑂𝑂(𝑛𝑛)
𝑇𝑇𝑠𝑠
=1

× 𝑉𝑉𝐷𝐷𝐷𝐷 𝑛𝑛 = 𝑉𝑉𝐷𝐷𝐷𝐷

Ts

TON

Vout_SF

Vout_Det

Vout_Ideal

n n+1n-1

Aliases: Time Stamped Bridge (TSB) | Virtual FPGA Switching 

V D
C
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▸Pros
• Good accuracy for system level and converter level studies
• Fast execution time
• Requires 𝑇𝑇𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 = 1

~4×𝑓𝑓𝑠𝑠𝑠𝑠
 for an accuracy of ~2% on the 

duty cycle
• Allows study of converters in larger systems without 

requiring as much decoupling as ideal switch to achieve 
real-time

• With computation technology (ex. FPGA) which is very 
fast, but not enough to simulate very fast power 
electronics (ex. fsw=100 kHz), switching function remain a 
very good solution for real-time simulation

▸Cons
• Certain cases may not be possible to simulate (ex. internal 

faults)
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Switching Function
Aliases: Time Stamped Bridge (TSB) | Virtual FPGA Switching 
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▸Model Features
• Models the average signal produced by 

the converters
• Models the near fundamental 

dynamics of the system
• Effects of switching are neglected
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Average Models

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 =
1
𝑇𝑇𝑠𝑠𝑠𝑠

�
0

𝑇𝑇𝑂𝑂𝑂𝑂

𝑆𝑆 𝑡𝑡 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

× 𝑉𝑉𝑑𝑑𝑑𝑑

𝑆𝑆 is the switch stat, 𝑇𝑇𝑠𝑠𝑠𝑠 is the switching 
period, 𝑉𝑉𝑑𝑑𝑑𝑑 is the DC link voltage and 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 
is the output voltage across the switch. 

Tsw

TONV D
C

Vout
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▸Pros
• Very fast execution
• Good for large system studies and 

controller interactions
▸Cons
• Switching frequency and its related 

phenomena are neglected
• Does not include low frequency 

phenomenon due to switching such as 
non-linearity due to dead-time
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Average Models

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 =
1
𝑇𝑇𝑠𝑠𝑠𝑠

�
0

𝑇𝑇𝑂𝑂𝑂𝑂

𝑆𝑆 𝑡𝑡 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

× 𝑉𝑉𝑑𝑑𝑑𝑑

𝑆𝑆 is the switch stat, 𝑇𝑇𝑠𝑠𝑠𝑠 is the switching 
period, 𝑉𝑉𝑑𝑑𝑑𝑑 is the DC link voltage and 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 
is the output voltage across the switch. 

Tsw

TONV D
C
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▸Voltage Source

▸Implemented with the output filter
▸Can include DC side dynamics
▸Models the filter related dynamics of the 

system
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Types Of Average Models
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Filter 
Network

▸Current Source

▸Usually does not include DC side dynamics
▸Filter dynamics are also neglected
▸System level control dynamics can be 

modeled
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Switching Models for Power Electronics – Summary  
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▸A CHIL simulation platform for Multi-port
Autonomous Reconfigurable Solar Power Plant 
(MARS)

- Study the integrated power electronics to 
interface utility-scale solar power, energy 
storage, dc, and ac systems with advanced grid 
services 

- Customized FPGA models of front-end 
converters (sub-μs)

• OPAL-RT’s legacy Time-Stamped Bridges
• Up to 2400 submodules in the system with independent 

gating signals
• Add-on two types of DC/DC converters with PV and ESS 
• Low level control for DC/DC converters with independent 

gating signals

- AC grid model (13 buses) running in CPU (60 
μs)
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Multi-Port Autonomous Reconfigurable Solar power plant (MARS)
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MARS architecture

*Z. Dong, S. Debnath, W. Li, Q. Xia, P. R. V. Marthi and S. Chakraborty, "Real-time Simulation Framework for Hardware-in-the-
Loop Testing of Multi-port Autonomous Reconfigurable Solar Power Plant (MARS)," 2021 IEEE Energy Conversion Congress and 
Exposition (ECCE), Vancouver, BC, Canada, 2021, pp. 3160-3167, doi: 10.1109/ECCE47101.2021.9595731.
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Multi-Port Autonomous Reconfigurable Solar power plant (MARS)

• AC grid
• MARS interface

CPU

PCIe
16 

D/A
Ch

• L-1 controller

Copper 
I/Os

• L-2 controller
FPGA

PCIe

Control Platform on OP4510 OP5707 Real Time Simulator

3× SFP ports 3× SFP portsFiber optics (SFP)

16 
A/D
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• MARS SMs
• L-3 controller
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CPU

V&I Gating 
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Current
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Fibers

V&IGating 
Signal

OP5707 FPGAOP4510 FPGA
References

from L-1 
Controller Front-end 

Half-bridges 
Model

SFP Protocol

RAM  RAM  

PV&ESS 
Converters

RAM
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SFP Protocol
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L-2 Controller

L-3 Controller 

RAM RAM 

V&I Duty 
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to L-1 
Controller
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×3
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×6
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×6

×3

×12 PV ×6 ESS

×1 PV, ×1 ESS

×6

RAM
×2

×3 ×18

MARS FPGA model MARS CHIL system setup

*Z. Dong, S. Debnath, W. Li, Q. Xia, P. R. V. Marthi and S. Chakraborty, "Real-time Simulation Framework for Hardware-in-the-Loop Testing of Multi-port Autonomous Reconfigurable Solar Power Plant (MARS)," 2021 IEEE Energy Conversion 
Congress and Exposition (ECCE), Vancouver, BC, Canada, 2021, pp. 3160-3167, doi: 10.1109/ECCE47101.2021.9595731.
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▸Project objective: Development and 
demonstration of a Modular, Multi-function, 
Multiport and Medium Voltage utility scale SiC 
solar inverter with integrated storage function

▸Real-time model of M4 inverter for CHIL 
validation (eHS, RT-XSG)

- Input-parallel and output-series converter with 9 modules 
- 72 DAB switches switching at max sw. freq. of 50 kHz, 2 ESS 

switches at sw. freq. 25 kHz and 36 DC/AC switches switching at 
60 Hz

- 3 single-phase breakers between AC grid and M4 inverter
- DABs with HF transformers are modeled by Time-Stamped 

Bridge (TSB) and other components are modeled in eHS
- The whole system runs in OP5707 in a single, Xilinx V7 FPGA at 

470 ns time step in TSB, 1 µs time step in eHS 
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Modular, Multifunction, Multiport and Medium Voltage Utility Scale SiC PV Inverter
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▸CHIL simulation platform of M4 inverter
- OP5707: M4 inverter, OP4510: M4 inverter output current 

controller
- Data communication: digital and analog channels
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Summary

Hardware-in-the-Loop (HIL) testing and experimentation is essential for validating the behavior 
of Power Electronics converters accurately.

Accurate models need to be chosen for modeling power electronics-based converters 
depending on the use cases considered.

While detailing switching models are ideal for accurate HIL testing, in specific cases, the 
appropriate use of switching function-based models and constant conductance-based models 
are adequate for HIL testing and scalable real-time simulations. 
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