Multi-Terminal DC Grids: Perspectives and Challenges

Maryam Saeedifard

Ken Byers Professor

Georgia Institute of Technology

Introduction: Bottlenecks in Legacy AC Grid

Challenges in Transmission Networks:

- Uncontrolled power flows and loop flows
- Low power transfer capability and inefficient utilization of transmission assets
- Blackout risk due to cascading effects

Grid Integration of Renewable Energy Resources

DOE Offshore Wind Energy Pathway: 30 GW by 2030 and 110 GW by 2050

Forecasted Offshore Wind Growth Outlook to 2031

Point-to-Point HVDC Transmission

Examples of HVDC links in Europe

$\boldsymbol{P} = \boldsymbol{V}_{dc}\boldsymbol{I}_{dc}$

HVDC: High Voltage Direct Current Transmission System

WHY HVDC?

- Long-distance bulk power transmission
- Improved reliability, flexibility, stability, and functionality

Multi-Terminal DC (MTDC) Grids

Euro "SuperGrid"

Zhangbei HVDC grid

US Eastern and Western Interconnects

Atlantic Wind Project

[1] DESERTEC, "The Desertec Concept for Energy, Water and Climate Security," DE-SERTEC Foundations, Tech. Rep., 2009.
[2] Y. Li, "China Upgrades Capacity to the Zhoushan Islands," T&DWorld, Mar. 2017.
[3] Connection, Atlantic Wind, "The Atlantic Wind Connection: A Bold Plan That Makes Sense. Brochure," 2012.

Key Components of MTDC Grids

DC-Side Fault Protection Issue

DC-Side Protection Based on DC Circuit Breakers

Tripping of Hybrid DC Breaker

Challenge: Cost, Footprint, Speed

- High electrical stress
- Long interruption time
- All metal-oxide varistors (MOVs) inserted simultaneously
- Under-utilized FMS curve

Sequential Tripping of Hybrid DC Breaker

The solution combines three key features:

- Sequentially tripped MOVs rather than simultaneously tripped MOVs
- Optimized tripping sequence with minimal number of switching events
- Closed-loop structure to ensure equal energy absorption under all conditions

IEEE 🏶

The Hybrid DC Circuit Breaker

EDISON - Efficient DC Interrupter with Surge Protection

	Mechanical	Solid- State	Hybrid with Conventional Tripping	Hybrid with Proposed Tripping
ON-state power loss	< 0.01 %	> 0.3 %	< 0.01 %	< 0.01 %
Interruption time	10-100 ms	< 100 µs	< 3 ms	< 2 ms*
DC voltage limit	3 kV	Scalable	Scalable	Scalable
Rel. power density	High	Low	Medium	High

The Layout of the Protection System

Primary & Backup Relaying Algorithm

 $\bigvee CB_{i1}$

 CB_i

 CB_{iN}

Primary Protection: Architecture

Architecture of the proposed hybrid primary protection unit

Receiver Operating Characteristics (ROC) Curves

Discrete Development of HVDC, PV and ESS

Discrete development of HVDC, solar, and ESS

- Increased costs
- Reduced reliability
- Reduced efficiency
- Competing controls
- Transient stability problems

Integrated Development of HVDC, PV and ESS

Develop integrated power electronics (MARS) to interface utility-scale solar power, energy storage, dc, and ac systems with advanced grid services.

- Reduced costs and losses than the discrete development.
- Provide primary and secondary frequency response improvement, congestion relief, and disturbance control TEEE rejection.

Energy Balancing Control Challenge

Hardware in the Loop Setup Line-line fault

Multi-Vendor Interoperability

O. D. ADEUYI et. al., "Multi-terminal Extension of Embedded Point-to-Point VSC-HVDC Schemes," Cigre B4-120, Paris, 2020.

Resonances in HVDC-Connected Wind Farms

Multi-vendor Interoperability

Challenges:

- Multi-vendor control
- Multi-vendor circuit breakers
- Multi-vendor hybrid AC/DC
- Grid forming/Grid-following operation

This is what we model

This is what we are faced with in reality!

The Need for Efficient and Scalable Medium and High-**Voltage DC-DC Converters**

(a)

(b)

Non-Isolated DC-DC MMC

Challenges for Offshore HVDC Stations

- Larger than a football field
- Construction and installation of such large structures can also be resource and cost-prohibitive
- Lifespan and reliability of power converters need to be pushed to over 30+ years

Concluding Remarks

- DC grids are key next-generation grids meshed inside the legacy grids.
- Win-win situation for both AC and DC

Thank you!

