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Introduction: Bottlenecks in Legacy AC Grid

g
Challenges in Transmission Networks: ™ %

» Uncontrolled power flows and loop flows

» Low power transfer capability and inefficient utilization of transmission assets
» Blackout risk due to cascading effects
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Grid Integration of Renewable Energy Resources
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Point-to-Point HVDC Transmission
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Examples of HVDC links in Europe
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HVDC: High Voltage Direct Current Transmission System
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WHY HVDC?

» Long-distance bulk power transmission

» Improved reliability, flexibility, stability, and functionality
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Multi-Terminal DC (MTDC) Grids
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Key Components of MTDC Grids
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Converter Technology: The Modular Multilevel Converter (MMC)
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DC-Side Fault Protection Issue
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DC-Side Protection Based on DC Circuit Breakers
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Tripping of Hybrid DC Breaker

Fault Delay for Tripping Signals
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Sequential Tripping of Hybrid DC Breaker

The solution combines three key features:

* Sequentially tripped MOVs rather than simultaneously tripped MOVs

* Optimized tripping sequence with minimal number of switching events

* Closed-loop structure to ensure equal energy absorption under all conditions
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The Hybrid DC Circuit Breaker

EDISON - Efficient DC Interrupter with Surge Protection
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The Layout of the Protection System

Fault clearance time by backup protection

/\ Primary protection

rimary trip signal

ary breaker opens

¢ Fault current
interruption

|/

IANVZRN

.~ DC bre

raker

\ Ko

tf\fy o =t}

Fault incgption

Fault detection

] i

tAc

o

Fault current
¢ interruption
breakers open

B p trip signal

Backu

D protection

%

Backup protection

Converter 1

[

CB;
Iy

Vg

Bus;

Ls

Data
Processing

to User ,

Primary
Fault Detection
& Backup Protection

Ti1

T

J

Interface

Fault Locating

Primary & Backup
Relaying Algorithm

< IEEE

The professionalhome for the engineering and technology community worldwide




Primary Protection: Architecture
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Discrete Development of HVDC, PV and ESS

» Discrete development of HVDC, solar, and ESS
— Increased costs
— Reduced reliability
— Reduced efficiency
— Competing controls
— Transient stability problems
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Transformer Substation €

Distribution Substation
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Integrated Development of HVDC, PV and ESS

' Potential MARS
integration points

T i
L{ SMy1 h L{ SMys h L{ SMy.c h
; ; ;
A $Mysmma }—‘ L My }—‘ < SMysume }—‘
L{ PV-SMy.0 }—‘ L{ PV-SM,1s h L{ PV-SM,.. }—‘
) q PV-SM,,_\FM}—‘ 1—{PV-SM,_W ,,h q PV-SMy . h
"

L{ ESS-S.\lN.h L{ ESS-SM,,15 h L{ IZSS-SM,,Lch
T T T

u{ ESS-SM.,\.,,,h u{ Ess-SM,,Mbh u{ ESS-SMy xone h
nd RoL, oy RoL, indli RoLo
e Rl i, RL s, RL s,
- Ril, Rl
Hvde na i in
M Extremely high Link H M h “H M, h H My h
B Very high r :
"y < SMasurns h % My h L sMasarne h
Moderately high s L{ s L{ s L{ s
| |
@ Large load center > 50000 GWh. Moderate . -
(Population >100000) - PV-SMasid ﬁl’\ SMasp PV-SMasid
Low
& Medium load center > 15000 GWh L{ EssSML by L{ Ess S\ by L{ Ess S\ by
(Population >40000) s Indusstry Proposed lines . mWI [ f f
Small load center > 100 GWh s Existing Overhead lines = m m ERCOT “{ ESS—SM.._\m.}“ “{ ESS-SM.“\MJ}“ “{ ESS-SM,‘_\N‘}-‘
(Population >5000) O——0 HVdc macro-grid EI -t

Vi Vb
Transmission
Line ac Grid

Develop integrated power electronics (MARS)to interface utility-scale solar power, energy storage,
dc, and ac systems with advanced grid services.

* Reduced costs and losses than the discrete development.

* Provide primary and secondary frequency response improvement, congestion relief, and disturbance contro IEEE
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Energy Balancing Control Challenge

Hardware in the Loop Setup Line-line fault
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Multi-Vendor Interoperability
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Resonances in HYDC-Connected Wind Farms
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Multi-vendor Interoperability

T——F Challenges:

A * Multi-vendor control

* Multi-vendorcircuit breakers

* Multi-vendor hybrid AC/DC

* Grid forming/Grid-following
operation
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The Need for Efficient and Scalable Medium and High-
Voltage DC-DC Converters
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Non-lsolated DC-DC MMC
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Challenges for Offshore HVDC Stations |

» Larger than a football field

» Constructionand installation of such large structures can also be resource and cost-prohibitive

» Lifespan and reliability of power converters need to be pushed to over 30+ years

Offshore wind turbine Wind energy generated HVDC platform Subsea cables, some O A converter station on
plants generate by the wind farm converts the alternating more than 100 km in land transforms the
medium-voltage AC turbines transformed to current from several length, transport the direct current back into
power higher AC power at the substation platforms to low-loss direct current alternating current for
substation platform direct current for onto land feeding into the

transmission high-voltage grid and

for further transmission
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Concluding Remarks

» DC grids are key next-generation grids meshed inside the legacy grids.
» Win-win situation for both AC and DC
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— The grid of the future?
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Thank you!
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